Author Affiliations
Abstract
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
The monolithic integration of Fabry-Perot cavities has many applications, such as label-free sensing, high-finesse filters, semiconductor lasers, and frequency comb generation. However, the excess loss of integrated reflectors makes it challenging to realize integrated Fabry-Perot cavities working in the ultrahigh-Q regime (>106). Here, we propose and experimentally demonstrate what we believe is the first silicon integrated million-Q Fabry-Perot cavity. Inspired by free-space optics, a novel monolithically integrated retroreflector is utilized to obtain near-unity reflectance and negligible reflection losses. The corner scattering in the retroreflector is prevented by the use of the TE1 mode, taking advantage of its zero central field intensity. Losses incurred by other mechanisms are also meticulously engineered. The measurement results show resonances with an ultrahigh intrinsic Q factor of 3.4×106 spanning an 80-nm bandwidth. The measured loaded Q factor is 2.1×106. Ultralow reflection losses (0.05 dB) and propagation losses (0.18 dB/cm) are experimentally realized.
Photonics Research
2022, 10(11): 2549
Author Affiliations
Abstract
1 Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USA
4 Electrical and Computer Engineering Department, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
5 Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
6 National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
7 State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
8 Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
In recent years, optical modulators, photodetectors, (de)multiplexers, and heterogeneously integrated lasers based on silicon optical platforms have been verified. The performance of some devices even surpasses the traditional III-V and photonic integrated circuit (PIC) platforms, laying the foundation for large-scale photonic integration. Silicon photonic technology can overcome the limitations of traditional transceiver technology in high-speed transmission networks to support faster interconnection between data centers. In this article, we will review recent progress for silicon PICs. The first part gives an overview of recent achievements in silicon PICs. The second part introduces the silicon photonic building blocks, including low-loss waveguides, passive devices, modulators, photodetectors, heterogeneously integrated lasers, and so on. In the third part, the recent progress on high-capacity silicon photonic transceivers is discussed. In the fourth part, we give a review of high-capacity silicon photonic networks on chip.
Photonics Research
2022, 10(9): A106
Author Affiliations
Abstract
1 Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
2 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
On-chip mode-manipulation is one of the most important physical fundamentals for many photonic integrated devices and circuits. In the past years, great progresses have been achieved on subwavelength silicon photonics for on-chip mode-manipulation by introducing special subwavelength photonic waveguides. Among them, there are two popular waveguide structures available. One is silicon hybrid plasmonic waveguides (HPWGs) and the other one is silicon subwavelength-structured waveguides (SSWGs). In this paper, we focus on subwavelength silicon photonic devices and the applications with the manipulation of the effective indices, the modal field profiles, the mode dispersion, as well as the birefringence. First, a review is given about subwavelength silicon photonics for the fundamental-mode manipulation, including high-performance polarization-handling devices, efficient mode converters for chip-fiber edge-coupling, and ultra-broadband power splitters. Second, a review is given about subwavelength silicon photonics for the higher-order-mode manipulation, including multimode converters, multimode waveguide bends, and multimode waveguide crossing. Finally, some emerging applications of subwavelength silicon photonics for on-chip mode-manipulation are discussed.
PhotoniX
2021, 2(1): 11
Author Affiliations
Abstract
Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
Polarizers have been widely used in various optical systems to reduce polarization cross talk. The polarizers based on the silicon nanowire waveguide can provide chip-scale device size and a high polarization extinction ratio. However, the working bandwidth for the on-chip silicon polarizers is always limited (<100 nm) by the strong waveguide dispersion. In this paper, an on-chip all-silicon polarizer with an extremely broad working bandwidth is proposed and demonstrated. The device is based on a 180° sharp waveguide bend, assisted with anisotropic subwavelength grating (SWG) metamaterial cladding to enhance the polarization selectivity. For TE polarization, the effective refractive index for SWG is extraordinary, so the incident TE mode can propagate through the sharp waveguide bend. For TM polarization, the effective refractive index for SWG is ordinary, so the incident TM mode will be coupled into the radiation mode regardless of the wavelength. The fabricated polarizer shows low loss (<1 dB) and high polarization extinction ratio (>20 dB) over a >415 nm bandwidth from 1.26 to 1.675 μm, which is at least fourfold better than what has been demonstrated in all previous works. To the best of our knowledge, such a device is the first all-silicon polarizer that covers O-, E-, S-, C-, L-, and U-bands.
Photonics Research
2019, 7(12): 12001432

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!